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Intrusive gravity currents
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The speed of a fluid intrusion propagating along a sharp density interface is predicted
using conservation of mass, momentum and energy. For the special case in which
the intrusion density equals the depth-weighted mean density of the upper and lower
layers, the theory of Holyer & Huppert (J. Fluid Mech., vol. 100, 1980, p. 739) predicts
that the intrusion occupies one-half the total depth, its speed is one-half the interfacial
long-wave speed and the interface ahead of the intrusion remains undisturbed. For
all other intrusion densities, the interface is deflected vertically by a long wave that
travels ahead of the intrusion and thereby changes the local upstream conditions.
In these cases, the conservation equations must be matched to an exact solution of
the two-layer shallow water equations, which describe the spatial evolution of the
nonlinear wave. We obtain predictions for the intrusion speed that match closely with
experiments and numerical simulations, and with a global energy balance analysis
by Cheong, Keunen & Linden (J. Fluid Mech., vol. 552, 2006, p. 1). Since the latter
does not explicitly include the energetics of the upstream wave, it is inferred that the
energy carried by the wave is a small fraction of the intrusion energy. However, the
new more detailed model also shows that the kinematic influence of the upstream
wave in changing the level of the interface is a critical component of the flow that
has previously been ignored.

1. Introduction
The oceans and atmosphere exhibit regions of rapid vertical density variation, such

as the thermocline and tropopause. Consequently, horizontal density-driven flow along
a sharp interface arises in a variety of natural settings (Simpson 1997). Such flows
are commonly referred to as interfacial gravity currents or intrusions and have been
the subject of extensive experimental investigations (Britter & Simpson 1981; Mehta,
Sutherland & Kyba 2002; Lowe, Linden & Rottman 2002; Sutherland, Kyba & Flynn
2004; Cheong, Kuenen & Linden 2006). Each of these studies examines high-Reynolds
number intrusions generated by lock releases – fluid of density ρi intermediate to
that of the two layers is initially separated by a vertical lock gate. The intrusion is
initiated by removing the gate vertically. We are concerned with the case where the
motion is independent of the lock length and hence the intrusion dynamics are not
influenced by finite-volume effects. It is observed that, consistent with dimensional
analysis, the propagation speed, U , is a constant which depends upon ρi and the
layer depths and densities. Deceleration will be observed only when the flow becomes
self-similar, which occurs once reflected disturbances from the endwall overtake the
intrusion head (Rottman & Simpson 1983; Bonnecaze, Huppert & Lister 1993).

A theoretical description of intrusions that satisfactorily predicts U over a broad
range of parameter space remains incomplete. In particular, complications arise when
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describing non-equilibrium flow for which the intrusion density, ρi , differs from the
depth-weighted mean density, ρE , of the upper and lower layers. Energy arguments in
the spirit of Yih (1965) suggest that the available potential energy of an equilibrium
intrusion is a global minimum and consequently U >UE when ρi �= ρE . More specific-
ally, a quadratic departure from the equilibrium solution is predicted, which shows
good agreement with related experiments and (two-dimensional) direct numerical sim-
ulations (Cheong et al. 2006). However, this energy-conserving approach is based on
the assumption that the leading-order behaviour of non-equilibrium intrusions may be
recovered by judicious interpolation of three well-known flows, namely heavy and light
gravity currents and the equilibrium intrusion. Therefore, although the assumptions
applied by Cheong et al. (2006) provide a model in good agreement with experiments,
they remain to be justified by a more rigorous examination of non-equilibrium flow
that includes some quantitative description of the various forces at play.

The foundations of such an analysis were established in the earlier work of Holyer &
Huppert (1980) who extended the gravity-current study of Benjamin (1968) by con-
sidering mass, momentum and energy conservation in a control volume moving with
the intrusion head. In the equilibrium case, Holyer & Huppert’s analysis accurately
predicts the intrusion speed, U . However, when ρi �= ρE , there are significant discre-
pancies between the predicted and observed speeds (Sutherland et al. 2004). Here,
we show that these discrepancies are due to the observed upstream deflection of the
interface that is caused by a long wave propagating ahead of the intrusion. Although
Holyer & Huppert (1980) considered the possibility of downstream wave propagation
(i.e. a stationary wave train behind the intrusion head), this upstream deflection is not
accounted for in their theory and consequently, in many circumstances, the upstream
conditions assumed in their calculations do not apply. In this paper we include the
effect of the upstream wave explicitly and calculate the intrusion speed for non-
equilibrium intrusions. Whereas the outcome of this analysis produces results similar
to those of Cheong et al. (2006), these approaches are nonetheless fundamentally
distinct as the latter is a simple energy balance in the spirit of Yih’s calculation for a
gravity current produced by lock exchange i.e. entirely different balances are applied
in deriving the respective governing equations.

2. Holyer & Huppert’s theory
We consider an intrusion of density ρi propagating at constant speed U along an

interface between upper and lower layers of respective depths HU and HL, as shown
in figure 1. Upstream and downstream of the intrusion front, the flow is assumed
horizontal such that the pressure p is hydrostatic. Therefore, along the vertical
segment BC

p =

{
pQ − g ρU z, 0 < z < HU,

pQ − g ρL z, −HL < z < 0,
(2.1)

where ρU and ρL are, respectively, the densities of the upper and lower layers, g

denotes gravitational acceleration, z = 0 corresponds to the height of the interface
and pQ is the pressure along the interface far upstream from the intrusion (figure 1).
Similarly, along AD

p =

⎧⎪⎨
⎪⎩

pR − gρi hU − g ρU (z − hU ), hU < z < HU,

pR − gρi z, 0 < z < hU,

pR − gρi z, −hL < z < 0,

pR + gρi hL − gρL (z + hL), −HL < z < −hL,

(2.2)
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Figure 1. Definition sketch of an intrusion (shaded) and the control volume ABCD. The
frame of reference is chosen so that the intrusion is at rest.

where hU and hL represent the vertical distances shown in figure 1. In this frame, all
the fluid inside the intrusion is at rest. Hence pR = pO , the pressure of the stagnation
point.

It is assumed that energy is conserved such that Bernoulli’s equation may be applied
along streamlines in the flow. Therefore, along the lower boundary of the intrusion
downstream from the stagnation point†, we find

u2
L = 2g′

Li hL = 2g′
Li (HL − dL), (2.3)

where

g′
Li ≡ g

ρL − ρi

ρ0

is the reduced gravity of the intrusion and the lower layer and ρ0 is a characteristic
density. Similarly,

u2
U = 2g′

iU hU = 2g′
iU (HU − dU ), where g′

iU ≡ g
ρi − ρU

ρ0

. (2.4)

Here dU and dL are the layer depths specified in figure 1. Since the layer volume
fluxes are constant, these depths are given by

dU =
U HU

uU

, dL =
U HL

uL

. (2.5)

From (2.3), (2.4) and (2.5), conservation of mass therefore requires

g′
iU

(HU − dU ) d2
U

H 2
U

= g′
Li

(HL − dL) d2
L

H 2
L

. (2.6)

An independent relation for dU and dL is obtained via horizontal momentum
conservation in the control volume ABCD. Because there are no externally imposed
forces, ∫ D

A

p + ρu2 dz =

∫ C

B

p + ρu2 dz. (2.7)

† Strictly speaking, the stagnation point is deflected upwards by a distance ζ = U 2/2g relative to
the interface (see (2.24) of Holyer & Huppert 1980). However, this elevation is negligible for most
flows of practical interest. Consistent with the Boussinesq approximation and figure 1, therefore, we
shall assume ζ ≡ 0.
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Using the hydrostatic pressure distributions (2.1) and (2.2) and the layer speeds given
by (2.3) and (2.4), we find

pO − pQ

ρ0

H = g′
iU

{
1
2

(
H 2

U − d2
U

)
− 2dU

HU

(HU − dU )2
}

+ g′
Li

{
1
2

(
H 2

L − d2
L

)
− 2dL

HL

(HL − dL)2
}

. (2.8)

Applying Bernoulli’s equation upstream along the interface, a second expression for
pO − pQ is obtained

pO − pQ

ρ0

H = g′
iU

d2
U

HU

(HU − dU ) + g′
Li

d2
L

HL

(HL − dL). (2.9)

Equating (2.8) and (2.9) gives

g′
iU

(HU − dU )2(HU − 2dU )

HU

+ g′
Li

(HL − dL)2(HL − 2dL)

HL

= 0. (2.10)

Equations (2.6) and (2.10) are, respectively, the Boussinesq limits of the mass and
momentum conservation equations first derived for arbitrary density differences by
Holyer & Huppert (1980) and written in this fashion by Sutherland et al. (2004).
Although both equations are nonlinear in the dependent variables dU and dL, sub-
stantial simplification is possible for certain special cases, as we demonstrate in the
following section.

3. Equilibrium intrusions
The easiest circumstance to consider is that of a doubly symmetric intrusion, for

which HU = HL and ρi =
1
2
(ρL + ρU ). This intrusion can be considered as two gravity

currents, one above the interface and its mirror image below, travelling at the
same speed, U (e.g. figure 7(a) of Lowe et al. 2002). In this case, g′

Li = g′
iU and

(2.6) is satisfied by dU = dL = D, say. Substituting this result in (2.10), we find two
solutions: D = 1

2
H and D = 1

4
H . The first solution corresponds to an intrusion with

zero thickness, h ≡ hU +hL =0, which, as in the bottom-propagating gravity current
case, is the energy-conserving intrusion for infinitely deep layers HU = HL → ∞. The
second solution corresponds to h = 1

2
H , and is the energy-conserving half-depth

solution described on p. 751 of Holyer & Huppert (1980).
This special case can be generalized to other instances in which the intrusion

consists of two gravity currents that are, in effect, mirror images of one another. This
equilibrium condition is realized whenever the intrusion is neutrally buoyant with
respect to the undisturbed interface such that

g′
iUhU = g′

LihL. (3.1)

Equation (3.1), with (2.3) and (2.4), implies that the speeds uL and uU are equal. Thus

dU

HU

=
dL

HL

⇒ dL + dU = 1
2
H, (3.2)

where conservation of mass and momentum has been applied. Hence an equilibrium
intrusion occupies half the channel depth. Further, because (3.2) implies hU/HU =
hL/HL, the neutral buoyancy condition (3.1) can be written as

ρi = ρE ≡ ρUHU + ρLHL

H
. (3.3)
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Figure 2. Propagation of a non-equilibrium intrusion in two-layer stratified media. For
illustrative purposes, the intrusion depicted here has a density ρi that is larger than ρE ,
the depth-weighted mean density of the upper and lower layers. Thus the leading wave has
positive amplitude, i.e. d > 0.

Thus when the intrusion density is the depth-weighted mean density ρE given by
(3.3), a consistent solution to the mass, momentum and energy equations is found
in which the interface remains undisturbed ahead of the intrusion (Sutherland et al.
2004). Note that (3.3) specifies either the equilibrium intrusion density ρE if the layer
depths and densities are given or, if the intrusion and both layer densities are given,
the equilibrium interface height hE defined by

hE

H
=

g′
iU

g′
LU

, (3.4)

where g′
LU = g′

iU + g′
Li is the reduced gravity of the interface. Moreover, since hL +

hU = 1
2
H , some simple manipulation shows that

hL =
hE

2
, hU =

H − hE

2
. (3.5)

Finally, the intrusion speed can be determined from (2.3) and (2.5):

UE = 1
2

√
g′

LU

hE(H − hE)

H
. (3.6)

This result is in good agreement with the equilibrium experiments and simulations
reported in Cheong et al. (2006) – see their figure 5. Nonetheless, (3.6) requires
substantial modification for the case of non-equilibrium flow for which the stagnation
point is deflected vertically by a long wave that travels ahead of the intrusion. As we
illustrate in § 4, this necessitates an explicit coupling of intrusion and wave dynamics.

4. Non-equilibrium intrusions
The flow domain is divided into two control volumes as illustrated in figure 2. Con-

trol volume ABEF encompasses the (steady) intrusion, which is assumed stationary
relative to the oncoming flow. Conversely, control volume BCDE encompasses the
(nonlinear) wave of amplitude d , which propagates upstream at a velocity c − U > 0
(in the shifted reference frame).
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4.1. Intrusion

Owing to wave-induced shear, the velocities of the upper and lower layers are
different and are given, respectively, by U +wU and U − wL where wU and wL denote
perturbations to the uniform upstream flow field considered in § 2. This disparity
leads to an interfacial deflection −ξ near the stagnation point O ′ where

ξ =
(U + wU )2 − (U − wL)2

2g′
LU

. (4.1)

Although the flow is Boussinesq, this displacement will be appreciable if ρi �� ρE . In
general, therefore, |ξ | �	 hU, hL and by Bernoulli’s equation

uU =
√

2g′
iU (DU − dU + ξ ) , uL =

√
2g′

Li (DL − dL − ξ ) , (4.2)

where DU = HU − d and DL = HL + d denote, respectively, the perturbed upper and
lower layer depths (figure 2). Applying these results to the mass conservation equations
for the upper and lower layers yields

U + wU =
dU

DU

√
2g′

iU (DU − dU + ξ ), (4.3)

and

U − wL =
dL

DL

√
2g′

Li(DL − dL − ξ ), (4.4)

respectively. By combining these results with (4.1), ξ can be expressed entirely in
terms of the distances dU , dL, DU and DL and the reduced gravities g′

iU , g′
Li and g′

LU :

ξ =

g′
iU

g′
LU

d2
U

D2
U

(DU − dU ) − g′
Li

g′
LU

d2
L

D2
L

(DL − dL)

1 − g′
iU

g′
LU

d2
U

D2
U

− g′
Li

g′
LU

d2
L

D2
L

. (4.5)

Furthermore, taking the difference between (4.3) and (4.4) and eliminating the wave-
induced velocity wL of the lower layer, yields

wU H

DL

=
dU

DU

√
2g′

iU (DU − dU + ξ ) − dL

DL

√
2g′

Li (DL − dL − ξ ). (4.6)

As expected from the previous discussion, horizontal momentum is conserved in
the control volume ABEF and following the analysis given in § 2,

pO − pQ

ρ0

H = g′
iU

{
1
2

(
D2

U − d2
U

)
− 2dU

DU

(DU − dU )2
[
1 +

ξ

DU − dU

]}

+ g′
Li

{
1
2

(
D2

L − d2
L

)
− 2dL

DL

(DL − dL)2
[
1 − ξ

DL − dL

]}
. (4.7)

Moreover, the pressure difference pO − pQ can again be determined by applying
Bernoulli’s equation upstream along the interface whereby

pO − pQ

ρ0

=
g′

iUg′
Li

g′
LU

[
d2

U

D2
U

(DU − dU + ξ ) +
d2

L

D2
L

(DL − dL − ξ )

]
. (4.8)
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Combining (4.7) and (4.8) yields the momentum balance

Hg′
iUg′

Li

g′
LU

[
d2

U

D2
U

(DU − dU + ξ ) +
d2

L

D2
L

(DL − dL − ξ )

]

= g′
iU

{
1
2

(
D2

U − d2
U

)
− 2dU

DU

(DU − dU )2
[
1 +

ξ

DU − dU

]}

+ g′
Li

{
1
2

(
D2

L − d2
L

)
− 2dL

DL

(DL − dL)2
[
1 − ξ

DL − dL

]}
. (4.9)

If the reduced gravities g′
iU and g′

Li and unperturbed layer depths HU = DU + d and
HL = DL − d are known, (4.5), (4.6) and (4.9) represent three equations in the five
unknowns ξ , wU , dU , dL and d . To close the system, we now consider the behaviour
of the upstream wave.

4.2. Nonlinear wave

The photographs presented in Sutherland et al. (2004) and Cheong et al. (2006)
suggest that the upstream wave is non-undular and may have amplitude comparable
with, or even greater than, the upper or lower layer depth. Motivated by these observa-
tions, we adopt a nonlinear dynamical description based on two-layer shallow water
theory with a flat bottom boundary. Starting from the Euler equations and mass
continuity, it can be shown that d and v = −wU H/DL must satisfy the following
coupled system of hyperbolic equations

∂d

∂t
+

∂

∂x

[
v(HU − d)(HL + d) − UH

H

]
= 0, (4.10)

∂v

∂t
+

∂

∂x

[
g′

LUd + Uv +
v2(HU − HL − 2d)

2H

]
= 0. (4.11)

An exact solution to (4.10) and (4.11) is found in which the Riemann invariant

sin−1

(
DL − DU

H

)
− sin−1

(
wUH

DL

√
g′

LUH

)
= sin−1

(
DL − DU − 2d

H

)
(4.12)

is conserved along characteristics (Baines 1995, § 3.3). Equation (4.12) relates the wave
amplitude d to the wave-induced velocity wU of the upper layer and can be expressed
in equivalent algebraic form as follows√

g′
LUHDL(DL − DU − 2d) = (DL − DU )

√
g′

LUHD2
L − w2

UH 2

− wUH
√

H 2 − (DL − DU )2. (4.13)

In the experiments of Cheong et al. (2006) the intrusion was generated by releasing
intermediate-density fluid from a lock by removing a vertical barrier. The amplitude
of the wave can be estimated by considering the vertical adjustment of the intrusion
fluid as it is released from the lock. When ρi exceeds the depth-weighted mean density
ρE , the intrusion will sink relative to the upstream interface and consequently over
the time interval �t , a volume of fluid

V = Λ(hE − HL)U�t (4.14)

is added to the lower layer. Here hE is the equilibrium height defined by (3.4) and Λ

is an unknown factor that characterizes the collapse of the intrusion fluid towards its
level of neutral buoyancy. If this adjustment is static, Λ = 1, but we expect a smaller
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Figure 3. Intrusion speed as a function of the interface height for (a) hE/H = 0.25,
(b) hE/H =0.50 and (c) hE/H = 0.61. Data points are taken from Cheong et al. (2006)
and show the results of both experiments (triangles) and numerical simulations (circles). Solid
and dashed curves are as indicated in the text. The vertical dotted lines show the range of
validity of the model equations with d ≡ 0, i.e. a flat upstream interface.

value because dynamical effects are important. The addition of volume to the lower
layer requires the dense fluid ahead of the intrusion to rise by an amount

d =
V

(c − U )�t
= Λ(hE − HL)

U

c − U
. (4.15)

For small d , c is approximately the linear long wave speed and by (3.6), c ∼ 2U ,
whereby

d ∼ Λ(hE − HL) = Λ

(
H

g′
iU

g′
LU

− HL

)
. (4.16)

Experiments conducted by Cheong et al. (2006) confirm the validity of this leading-
order approximation and give Λ � 0.3. For this numerical value of Λ, we find an
expected symmetry in HL about HL/H = 1

2
when g′

iU = g′
Li , i.e. hE/H = 1

2
(see § 5).

The balances quantified by (4.5), (4.6), (4.9), (4.13) and (4.16) represent a closed
system of equations for the unknowns ξ , wU , dU , dL and d . By solving this system of
equations, the intrusion speed U may be determined from (4.3).

5. Results
The governing equations are nonlinear and therefore multiple solutions are pre-

dicted for prescribed conditions. Here, attention is restricted to the solution for which
the intrusion volume flux is maximized (Holyer & Huppert 1980; Faust & Plate 1984).
As with the analysis of Holyer & Huppert (1980), this physical solution does not
exist in all regions of parameter space. More specifically, model breakdown is likely
to be encountered if the leading-order balance suggested by (4.16) proves inadequate,
i.e. higher-order terms in hE − HL become significant, or the upstream disturbance
takes the form of a bore rather than a long wave of expansion. In contrast to
earlier studies, however, the system of equations considered here yields a physically
meaningful solution in a relatively broad neighbourhood of the equilibrium point
hE =HL. For example, with hE/H = 0.5, (4.5), (4.6), (4.9), (4.13) and (4.16) admit a
physical solution for HL/H � 0.0663 to 0.934. By contrast if the wave amplitude d

(and hence the velocities wU and wL) are set identically to zero, intrusion properties
may be determined only over the restricted range 0.437 � HL/H � 0.564.

Figure 3 shows the intrusion speed (normalized by
√

g′
LUH ) as a function of the

non-dimensional interface height, HL/H , for three choices of hE/H . Solutions
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predicted by the equations of § 4 are indicated by the thick solid line. The dashed
lines indicate the speeds obtained from the global energy-conserving model described
in § 4 of Cheong et al. (2006), which proposes the following relationship between U ,
HL and hE:

U√
g′

LUH
= 1

2

√(
HL

H

)2

− 2HLhE

H 2
+

hE

H
. (5.1)

Although this result neglects the kinematic influence of the leading interfacial waves,
strong qualitative agreement is observed between (5.1) and the detailed equations of
§ 4. In particular, both models predict a global minimum of U = UE when HL = hE ,
in which case there is no mass transport across the vertical level z = HL during the
gravitational adjustment of the intrusion. By contrast, when HL �= hE (i.e. ρi �= ρE),
intrusion fluid steadily rises or falls behind the intrusion front, which provides an
additional source of energy to drive the flow (Cheong et al. 2006).

Quantitative differences between the solid and dashed lines of figure 3 elucidate
the dynamic influence of the interfacial waves, which play a secondary, yet purely
parasitic role. As is clear from figure 3(a) in particular, the lower estimates of the
intrusion speed predicted by (4.5), (4.6), (4.9), (4.13) and (4.16) provide a closer fit with
the results of the two-dimensional direct numerical simulation algorithm described in
Cheong et al. (2006). Consistent with expectations, agreement is particularly strong
as HL → hE , where the leading-order approximation (4.16) is most appropriate.

6. Conclusions
A fluid intrusion necessarily excites an upstream interfacial wave when the intrusion

density, ρi , differs from the depth-weighted mean density, ρE , of the upper and lower
layers. In general, this disturbance will be nonlinear and will exert some non-trivial
dynamical influence in that the wave (i) deflects the interface ahead of the intrusion
and thereby alters the vertical position of the stagnation point, and, (ii) causes a shear
such that the local horizontal velocities of the upper and lower layers are unequal.
These effects may be incorporated into existing models by combining exact solutions of
the two-layer shallow water equations with mass, momentum and energy conservation
applied to a control volume surrounding the intrusion head. The coupled equations,
which are given by (4.5), (4.6), (4.9), (4.13) and (4.16), provide good agreement with
the results of analogue experiments and numerical simulations.

The analytical model developed herein also shows relatively strong agreement
with the results of Cheong et al. (2006). In contrast to the present discussion, their
formulation omits a detailed consideration of the force balance that provides the
impetus for motion. Rather, using a Yih (1965)-type energy argument, non-equilibrium
intrusions are described in terms of related equilibrium flows. The fact that these
completely different approaches yield comparable results is encouraging and suggests
that the upstream interfacial wave extracts only a small fraction of the intrusion
kinetic energy, as has been observed in the case of vertically propagating internal
waves by Ungarish & Huppert (2002) and Flynn & Sutherland (2004). This is
different, however, from arguing that the interfacial wave has negligible impact.
Indeed, as is suggested by figure 3, Benjamin (1968)-type models that fail to account
for the upstream wave-induced effects summarized in the previous paragraph yield
physically relevant solutions only over a limited region of parameter space.
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